TFAWS Active Thermal Paper Session

Thermal Design Challenges Posed by the Four Bed CO2 Scrubber COTS Air-Save Pump

Dan Popok

Marshall Space Flight Center,

Linc Research | Jacobs Space Exploration Group (JSEG)

Engineering Services and Science

Capabilities Augmentation (ESSCA)

dan.popok@nasa.gov

Presented By Dan Popok

Thermal & Fluids Analysis Workshop TFAWS 2020 August 18-20, 2020 Virtual Conference

Introduction

- The <u>Four Bed Carbon Dioxide</u> (<u>4BCO2</u>) scrubber <u>Air-Save Pump</u> (<u>ASP</u>) operates as part of the adsorbent bed regeneration cycle.
- ASP removes residual air from the bed for return to the cabin prior to heat and vacuum exposure which removes the CO2, regenerating the bed.
- 4BCO2 employs a <u>Commercial Off-the-Shelf</u> (<u>COTS</u>) scroll type air pump
 - Repackaged in an acoustically insulated enclosure to reduce noise
 - Mounted to a cold plate.
- The <u>International Space Station</u> (<u>ISS</u>) <u>Low Temperature Loop</u> (<u>LTL</u>), operates between 38F and 50F
 - Flows first through a precooler to cool the process air. Precooler performance requires LTL.
 - Then flows through the cold plate, cooling the pump. Acoustic enclosure precludes air cooling, requiring LTL.
- Results in competing ASP thermal design goals:
 - Keep the pump and motor sufficiently cool
 - Avoid forming condensation due to over-cooling.
- Surfaces below 60F typically warrant careful consideration of condensation.
- A test-calibrated thermal model demonstrates such a balanced design is feasible with temperatures above 60F.
- A separate, coupled fluid model predicts the potential for condensation formation, allowing risk assessment of flying with the unmodified design.

Outline

- 4BCO2 description
- The COTS air pump
- Thermal characterization testing showing condensation risk
- Test correlated thermal model
- Condensation eliminating design mods
- Condensation model and analysis
- Questions?

4BCO2 Description

- CO2 scrubber for EXPRESS Rack
- Consists of 4 beds
 - Two CO2 adsorbing beds
 - Two desiccant beds
- Fluid interfaces
 - Avionics air cooling: 18.3C (65F) to 29.4C (85F)
 - LTL cooling: 3.3C (38F) to 10C (50F)
 - Process air: CO2 removed and returned to cabin
 - Vacuum port: disposes extracted CO2
- LTL
 - Cools process air upstream of adsorbent bed
 - Cools the air save pump

Flight Hardware Assembly

4BCO2

4BCO2

ASP Purpose

- 4BCO2 operates in two 80 minute half cycles
 - One adsorbent bed scrubs CO2 while the other regenerates
 - One desiccant bed dries incoming ISS cabin air while the other re-humidifies air going back to the cabin
- ASP participates in adsorbent bed regeneration process
 - For the first 10 minutes: pumps residual air from the adsorbent bed for return to the cabin
 - For the remaining 70 minutes: heaters and vacuum exposure removes CO2, recharging the bed for the next half cycle

4BCO2 Operation

Description of Cycle and Half-Cycle

One Cycle

Half Cycle A

Half Cycle B

4BCO2 Operation

 Flipping through the next 25 slides fairly rapidly to show 4BCO2 operation as "pseudo animation"

4BCO2 Operation (1)

4BCO2 Operation (2)

4BCO2 Operation (3)

Transition out of Air-Save

4BCO2 Operation (4)

Transition out of Air-Save

4BCO2 Operation (5)

Adsorption of Bed A-2: Desorption of Bed A-1

4BCO2 Operation (6)

Adsorption of Bed A-2: Desorption of Bed A-1

4BCO2 Operation (7)

Adsorption of Bed A-2: Desorption of Bed A-1

4BCO2 Operation (8)

Last Segment (CO2 to Vacuum)

4BCO2 Operation (9)

End of First Half Cycle

4BCO2 Operation (10)

Transition to Second Half Cycle Air-Save

4BCO2 Operation (11)

Transition to Second Half Cycle Air-Save

4BCO2 Operation (12)

Transition to Second Half Cycle Air-Save

4BCO2 Operation (13)

Second Half Cycle Air-Save

Half Cycle B Segment B1, Mode 5

Half Cycle is now repeated, but in the opposite direction

4BCO2 Operation (14)

Transition out of Second Half Cycle Air-Save

4BCO2 Operation (15)

Transition out of Second Half Cycle Air-Save

4BCO2 Operation (16)

Transition out of Second Half Cycle Air-Save

4BCO2 Operation (17)

Adsorption of Bed A-1: Desorption of Bed A-2

4BCO2 Operation (18)

Adsorption of Bed A-1: Desorption of Bed A-2

4BCO2 Operation (19)

Adsorption of Bed A-1: Desorption of Bed A-2

4BCO2 Operation (20)

Vent to Vacuum

4BCO2 Operation (21)

End of Second Half Cycle

4BCO2 Operation (22)

Transition to First Half Cycle

4BCO2 Operation (23)

Transition to First Half Cycle

Temporary Cessation of All Air Flow Segment B3, Mode 7

4BCO2 Operation (24)

Transition to First Half Cycle

4BCO2 Operation (25)

Air-Save
Half Cycle A
Segment A1, Mode 2

Repackaging the COTS Pump

- Noise requirements drove repackaging the COTS pump and motor, putting it inside an acoustically insulated enclosure
 - Motor drive board relocated to separate avionics box
 - Motor and point mounted to LTL-cooled cold plate, no fan cooling

Thermal Limits

- 50C (122F) ambient rating in vendor-supplied form
- 70C (158F) max pump housing
- 65C (149F) max motor housing

Performance characteristics

- ~75/25 pump/motor heat dissipation split
- Motor efficiency ~75%
- Pump efficiency = low (~4%) since pumping against deadhead vacuum most of the time

Repackaged Pump and Motor

Cold plate thermal insulation and acoustic insulation not shown

ISS Temperature/Humidity Envelope

- SSP 57000 Rev S, Section 3.9.1 specifies condensation prevention requirements
 - Generally interpreted as avoiding surface temperatures below 15.6C (60F), the worst case cabin air dew point
 - Exceptions permitted if no fungus susceptibility
 - SSP 57000 ISS temperature/humidity environment applies to ISS cabin, but assumed to apply inside the 4BCO2 rack

 Thermal characterization testing with the Flight Unit showed numerous temperatures below 15.6C (60F)

Flight Unit Thermal Characterization

 Thermal characterization testing with the Flight Unit showed numerous temperatures below 15.6C (60F)

The Thermal Conundrum

- In fan/air-cooled COTS configuration, possibility exists to treat pump as a simple "component" rated for 50C (122F) ambient conditions.
 - Ensuring rack air temperature less than 50C in vicinity of pump would suffice
 - Rack air < 100% relative humidity and pump temperature always ≥ rack air temperature → no condensation
- Acoustic enclosure and cold plate results in need for thermal balance between competing goals
 - Pump and motor must not get too hot, BUT
 - Need to avoid over-cooling to prevent condensation
 - Acoustic enclosure precludes using avionics air to cool ASP
- LTL temperatures ranging from 3.3C (38F) to 10C (50F) pose a real condensation concern with 15.6C (60F) dew point limit
 - Low LTL temperatures required by pre-cooler performance demands

ASP Condensation Analysis

- ASP thermal model developed and run with Thermal Desktop (also part of 4BCO2 system level model)
- Model dialed-in to agree with transient thermal characterization test data for hot and cold cases.
- Resulting tuned thermal model used to identify design changes balancing and satisfying the competing thermal goals – keeping pump and motor sufficiently cool without allowing condensation to form
- Additional fluid model (Thermal Desktop FloCAD)
 predicted condensation formation and accumulation for a
 range of possible worst case conditions

ASP Thermal Model

Cover and insulation removed

ASP Power and Heat Dissipation

- Power measured at input to motor controller and used to compute pump and motor heat dissipation
- Assumptions
 - 3.6W controller standby power
 - 85% controller converter efficiency
 - 75% motor efficiency
 - 4% pump efficiency (averaged over 10 minute operation)
 - Linear power variation over 10 minute pump down (higher power when pumping against dead head vacuum

Model Calibrated to Test: Pump

Model Calibrated to Test: Motor

Model Calibrated to Test: Cold Block and Strap Blocks

MOC

Model Calibrated to Test: Pillar and Cradle

Model Calibrated to Test: Cold Plate

Model Calibrated to Test: Acoustic Enclosure

Thermal Design Study

- Using the dialed-in thermal model ...
- Cases based on conditions predicted in the rack:
 - Cold case try to get temperatures > 15.6C (60F)
 - Hot case make sure pump temperature < 70C (158F) and motor temperature < 65C (149F)
- Analysis predicted no exterior condensation for expected cold operating conditions
- Found these design mods
 - Decrease thermal coupling to the cold plate by eliminating indium shims in lieu of thermal insulator shims
 - Supports beneath cradle
 - Beneath legs of pillars
 - Increase thermal coupling from pump to upper cold block to offset pump and motor temperature increases caused by the thermal insulator shims

ASP Design Changes

3: Improve thermal coupling to offset

pump and motor temperature increases

caused by 1 & 2

Design Outcome

- Project decided not to modify the first flight unit, though these changes could be applied to the second flight unit
 - Late in project schedule
 - Decided to accept condensation risk on basis of fungus resistant materials used throughout
- Still need to look at condensation risk
 - Necessity of on-orbit condensation mitigation steps?
 - Inspection?
 - Motor not design for operation in presence of liquid water, wiring not hermetically sealed to housing
 - Motor OK for high humidity noncondensing conditions
 - Pump OK in presence of condensatio

Condensation Fluid (FloCAD) Model

Plenum at 29.4C (85F), 2 humidity conditions

- 1. 15.6C (60F) dew point = 43% relative humidity

 nominal worst case
- 2. 75% relative humidity (24.5C = 76.1F dew point) extreme worst case

Orifice

Represents air leak path into the enclosure Phase specific suction – only water vapor allowed to pass, trapping liquid water in the enclosure

Tank 80 in³ volume

2-constituent fluid consisting of

- 1. Air (ideal gas)
- 2. Two-phase water

Initial condition in tank = same as the plenum

Fluid tie, based on 353 in² surface area, and 1 inch thick conduction path through air

Thermal boundary node: time dependent temperature derived from ASP thermal model

Average Interior Surface Temperature

Leak Size Sensitivity Study

Condensation Prediction

Condensation Prediction

Condensation Predictions

Ran cyclic simulation with average surface temperature obtained from ASP thermal model

Plenum and Initial Condition	Inlet temperature to ASP cold plate	Comment	Result
29.4C (85F), 43% R.H.	8.9C (48F) – includes precooler warming effect	Reasonable worst case	No condensation
29.4C (85F), 43% R.H.	3.3C (38F) – excludes precooler warming effect	Moderately extreme worst case	Condensation forms on each half cycle, but completely evaporates no accumulation
29.4C (85F), 75% R.H.	3.3C (38F) – excludes precooler warming effect	Extreme worst case	Condensation forms on each half cycle, but does not completely evaporate condensation accumulates. Assume 3 year mission running continuously at these extreme worst case conditions, ~9 mL predicted to form

 CONCLUSION: condensation unlikely to form, condensation risk of flying as-is design falls between zero and very small

References

- 4BCO2-DOC-003A Four Bed CO2 Scrubber Concept of Operations
- 4BCO2-RQMT-004D System Requirements and Verifiaiton Matrix
- ISS Pressurized Payloads Interface Requirements Document, SSP 57000 Rev S
- Air Save Pump Assembly and Controller Thermal Characterization Test for Flight Unit, JETS-JE33-20-TLSS-TP-0012, 2/27/2020
- Thermal Desktop (Version 6.0) technical documentation
- Scroll Labs Datasheet and User Guide for SVF-50 Miniature Dry Floating Scroll Vacuum Pump

 Acknowledgement to Warren Peters (MSFC-ES62) who created the 4BCO2 cycle diagrams and pseudo animation

Questions?